US009268695B2

a2 United States Patent

Weiner et al.

US 9,268,695 B2
Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(1)

(52)

METHODS AND STRUCTURE FOR USING
REGION LOCKS TO DIVERT I/O REQUESTS
IN A STORAGE CONTROLLER HAVING
MULTIPLE PROCESSING STACKS

Applicant: LSI Corporation, Milpitas, CA (US)

Inventors: Adam Weiner, Henderson, NV (US);
Robert L. Sheffield, Jr., Longmont, CO
(US); Naveen Krishnamurthy,
Bangalore (IN); Kapil Sundrani,
Bareilly (IN); Rajeev Srinivasa
Murthy, Bangalore (IN); Anand
Narayanamurthy, Bangalore (IN);
Horia Cristian Simionescu, Foster City,
CA (US); James A. Rizzo, Austin, TX
(US)

Assignee: Avago Technologies General IP

(Singapore) Pte. Ltd., Singapore (SG)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 404 days.

Appl. No.: 13/711,885

Filed: Dec. 12, 2012

Prior Publication Data

US 2014/0164715 Al Jun. 12, 2014

Int. Cl1.
GO6F 12/08
GO6F 3/06
GO6F 12/14
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)

............ GO6F 12/0815 (2013.01); GOG6F 3/061
(2013.01); GOG6F 3/0635 (2013.01); GO6F
3/0659 (2013.01); GO6F 3/0671 (2013.01);
GO6F 12/14 (2013.01)

(58) Field of Classification Search

CPC . GOG6F 12/0808; GOGF 9/3857; GOG6F 9/3806;
GOGF 9/3838; GO6F 9/384; GOG6F 12/0815;
GOG6F 12/14; GOG6F 13/14; GOGF 3/0613;
GOG6F 3/0619; GOG6F 3/0659; GOGF 9/30054
711/118, 120, 125, 143, 144, 150,
711/159.163, 165, 166

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,285,528 A 2/1994 Hart
5,761,659 A 6/1998 Bertoni
6,032,216 A 2/2000 Schmuck et al.
6,574,749 Bl 6/2003 Parsons
6,675,157 Bl 1/2004 Mitchell
7,082,390 B2 7/2006 Bergsten
7,167,960 B2 1/2007 Kodama
7,260,703 Bl 8/2007 Moore et al.
7,269,588 Bl 9/2007 Verma et al.
7,290,105 B1 10/2007 Jeter, Jr. et al.
(Continued)
OTHER PUBLICATIONS

Brian Randell. 1985. Hardware/software tradeoffs: a general design
principel?. SIGARCH Comput. Archit. News 13, 2 (Jun. 1985),
19-21.

Primary Examiner — Zhuo Li

(57) ABSTRACT

Methods and structure within a storage controller for using
region locks to efficiently divert an I/O request received from
an attached host system to one of multiple processing stacks
in the controller. A region lock module within the controller
allows each processing stack to request a region lock for a
range of block addresses of the storage devices. A divert-type
lock request may be established to identify a range of block
addresses for which I/O requests should be diverted to a
particular one of the multiple processing stacks.

13 Claims, 6 Drawing Sheets

RECEIVE FAST PATH FORMATTED
10 REQUEST IN FAST PATH CIRCUIT

~-200

DOES
REQUEST ACCESS
BLOCKS THAT SHOULD BE

LOCKS GRANTED TO THE FIRMWARE
PROCESSING
STACK?

PROCESSED BY FIRMWARE PROCESSING
STACK BASED ON OVERLAP WITH DIVERT-TYPE

204
N
PROCESS l/0
USING FAST
PATH CIRCUIT

DIVERT REQUEST TO FIRMWARE
PROCESSING STACK FOR PROCESSING

[~-206

US 9,268,695 B2
Page 2

(56)

7,305,537
7,370,128
7,386,692
7,478,179
7,562,200
7,627,744
7,685,462
7,730,222
7,734,616
7,774,569
7,827,362
2003/0135783
2003/0140209

U.S. PATENT DOCUMENTS

Bl
B2
Bl
B2
Bl
B2
Bl
B2
B2
Bl
B2
Al
Al

References Cited

12/2007
5/2008
6/2008
1/2009
7/2009

12/2009
3/2010
6/2010
6/2010
8/2010

11/2010
7/2003
7/2003

Moore et al.
Douglas

Moore et al.
Moore et al.

Chatterjee et al.

Mabher et al.
Leong
Passerini
Mogi et al.

Chatterjee et al.

Passerini
Martin et al.
Testardi

2003/0200398 Al
2005/0220112 Al
2005/0228924 Al
2006/0047902 Al
2006/0095658 Al
2007/0088928 Al*
2007/0136341 Al
2007/0233684 Al
2008/0024413 Al
2008/0181229 Al
2008/0244136 Al
2009/0254774 Al*
2010/0268904 Al*
2012/0042101 Al
2012/0089753 Al*

* cited by examiner

10/2003
10/2005
10/2005
3/2006
5/2006
4/2007
6/2007
10/2007
1/2008
7/2008
10/2008
10/2009
10/2010
2/2012
4/2012

Harris

Williams, Jr. et al.

Marushak et al.

Passerini

Marushak et al.

Thangaraj etal. 711/163
Schopp

Verma et al.

Minami et al.

Williams et al.

Radulescu

Chamdani et al. 714/2
Sheffield et al. 711/163
Young et al.

Pelisetal.ccoovvvnnnnnn 710/39

U.S. Patent Feb. 23,2016 Sheet 1 of 6 US 9,268,695 B2

FIG. 1
HOST SYSTEM
120
A
5 CACHE
150 MEMORY
160 108
o T T J A
” ~ -
4 =~ ¥
\J i
FAST PATH 15{)‘ REGIONLOCK | 158 PE'S&"E’VS‘ETSG
CRCUT | | MODULE | o o L
% 106 0 104 ™-154
A
\.q —
162 Y
BAD BLOCK
MEMORY
110
152
N
ENHANCED STORAGE CONTROLLER 100

STORAGE

DEVICES
130

U.S. Patent Feb. 23,2016 Sheet 2 of 6 US 9,268,695 B2

FIG. 2

RECEIVE FAST PATH FORMATTED

200
I/0 REQUEST IN FAST PATH CIRCUIT

DOES

202 204

REQUEST ACCESS
BLOCKS THAT SHOULD BE
PROCESSED BY FIRMWARE PROCESSING S
STACK BASED ON OVERLAP WITH DIVERT-TYPE ot RGO
LOCKS GRANTED TO THE FIRMWARE

PROCESSING
STACK?

DIVERT REQUEST TOFIRMWARE |
PROCESSING STACK FOR PROCESSING 206

U.S. Patent Feb. 23,2016 Sheet 3 of 6 US 9,268,695 B2

FIG. 3

RECEIVE FAST PATH

FORMATTED 1/0 REQUEST 300

Y

APPLY LOCK REQUEST SIGNAL TO
REGION LOCK MODULE FOR ACCESS }—~-302

TO AFFECTED BLOCKS
310
) 304
REQUEST TRANSFERRED/ LOCK
DIVERTED -NO FURTHER GRANTED?
PROCESSING

PROCESS I/0 REQUEST IN N
FAST PATH CIRCUIT 306

Y

APPLY LOCK RELEASE SIGNAL
TO REGION LOCK MODULE -308

U.S. Patent

Feb. 23,2016 Sheet 4 of 6
FIG. 4 400
b
ADD NEW LOCK ENTRY REQUEST TO
LOCK MANAGEMENT TREE
4%4
MARK ENTRY REQUEST “GRANTED" ANY 402
TO FAST PATH CIRCUIT FOR P NO OVERLAPPING

IDENTIFIED BLOCKS AND SIGNAL
FAST PATH CIRCUIT TO CONTINUE

MARK LOCK ENTRY
REQUEST AS

4081
“‘DIVERTED"

LOCKS?

406

ANY
OVERLAPPING
LOCK A DIVERT-TYPE
LOCK?

YES

WAIT FOR RELEASE OF
ALL IDENTIFIED OTHER
OVERLAPPING LOCKS

412

410

ANY OTHER
(NON-DIVERT-TYPE)
LOCKS OVERLAPPING?

414

NEW
LOCK ENTRY MARKED AS

C LOCK RELEASE REQUEST)

y

X

RELEASE
PREVIOUSLY
GRANTED LOCK

420

‘DIVERTED ?

416

US 9,268,695 B2

GRANT LOCK TO FIRMWARE
PROCESSING STACK FOR
IDENTIFIED BLOCKS (AND SIGNAL
FIRMWARE TO PROCEED)

U.S. Patent

FIG. 5

Feb. 23, 2016

FIRMWARE PROCESSING
STACK WRITE REQUEST
PROCESSED

~-500

A4

MARK AFFECTED BLOCKS
IN CACHE MEMORY A8
‘DIRTY DATA’

~-502

\ 4

APPLY DIVERT-TYPE LOCK
REQUEST SIGNAL TO
REGION LOCK MODULE FOR
AFFECTED RANGE OF BLOCK
WITH DIRTY DATA

~-504

FIG. 7

ADD BAD BLOCK TO BAD
BLOCK LIST IN BAD BLOCK
MEMORY

~~-700

A\

APPLY DIVERT-TYPE LOCK
REQUEST SIGNALTO
REGION LOCK MODULE FOR
AFFECTED RANGE OF BLOCKS
WITH BAD BLOCK

~-702

Sheet 5 of 6

FIG. 6

US 9,268,695 B2

FLUSH DIRTY DATA BLOCKS
FROM CACHE MEMORY TO
STORAGE DEVICES

~-600

Y

APPLY DIVERT-TYPE LOCK
RELEASE SIGNAL TO REGION
LOCK MODULE FOR
AFFECTED BLOCKS NOW NO
LONGER DIRTY

~- 602

FIG. 8

REMOVE BAD BLOCK FROM
BAD BLOCK LIST
(UPON RECEIPT OF WRITE
TO BAD BLOCKS)

~-800

\ 4

APPLY DIVERT-TYPE LOCK
RELEASE SIGNAL TO REGION
LOCK MODULE FOR
AFFECTED BLOCKS NOW NO
LONGER MARKED AS BAD
BLOCKS

~-802

U.S. Patent Feb. 23,2016 Sheet 6 of 6 US 9,268,695 B2

FIG. 9
STORAGE
PROCESSOR MEDIUM
902
A
\ 4
l0 PROGRAM AND

DEVICES < o| DATAMEMORY

906 904

& 950

CACHE AND BAD y y
BLOCK MEMORY | _ FAST PATH || REGION LOCK

SUBSYSTEM | CIRCUIT MODULE

910 908 914
CONTROLLER PROCESSING SYSTEM 900

US 9,268,695 B2

1

METHODS AND STRUCTURE FOR USING
REGION LOCKS TO DIVERT I/O REQUESTS
IN A STORAGE CONTROLLER HAVING
MULTIPLE PROCESSING STACKS

BACKGROUND

1. Field of the Invention

The invention relates generally to storage controllers and
more specifically relates to methods and structure for using
region lock structures to divert I/O requests to one of multiple
1/0 processing stacks of the storage controller.

2. Related Patents

This patent is related to the following commonly owned
United States patents and/or patent applications (collectively
referred to herein as the “Related Patents™):

U.S. patent application Ser. No. 12/760,415 entitled
“APPARATUS AND METHODS FOR TREE MAN-
AGEMENT ASSIST CIRCUIT IN A STORAGE SYS-
TEM” filed 14 Apr. 2010,

U.S. patent application Ser. No. 12/760,434 entitled
“APPARATUS AND METHODS FOR REGION
LOCK MANAGEMENT ASSIST CIRCUIT IN A
STORAGE SYSTEM?” filed 14 Apr. 2010, and

U.S. Pat. No. 7,529,902 entitled “METHODS AND SYS-
TEMS FOR LOCKING IN STORAGE CONTROL-
LERS” filed 19 Oct. 2005.

All of which are hereby incorporated by reference.

3. Discussion of Related Art

A storage controller is a device adapted to receive 1/O
requests from one or more host systems and to process such
received requests to store or retrieve data on storage devices
coupled with the storage controller. For example, a RAID
(Redundant Array of Independent Drives) storage controller
manages one or more logical volumes that each comprises
portions of one or more physical storage devices. The RAID
controller maps logical block addresses of the logical vol-
umes to corresponding physical blocks of the storage devices
and provides redundancy and/or striping of the data for
enhanced reliability and/or performance (in accordance with
redundancy and striping policies of a particular RAID storage
management technique defined for the logical volume).

It is common for high performance storage controllers to
utilize a cache memory to enhance performance of the storage
controller in processing 1/0 requests. For example, data writ-
ten to a logical volume by a host system may be stored in the
storage controller’s cache memory such that subsequent read
1/0 requests may be satisfied by retrieving the requested data
from the cache memory far more rapidly than by retrieving
the requested data from the storage devices that comprise the
logical volume. Some storage controllers may manage the
cache memory as a “write-through” cache in which data is
written to both the cache memory and to the storage devices.
Some controllers may manage the cache memory in a “write-
back” mode in which data is written to the cache memory and
only posted/flushed to the storage devices at some later time
(e.g., when the storage controller is less busy processing /0
requests). In the write-back mode, there could be data (re-
ferred to as “dirty data”) that resides in the cache memory but
is not yet stored on the storage devices.

Some storage controllers (e.g., high-performance RAID
storage controllers) provide for multiple processing pathways
or stacks within the storage controller for processing 1/O
requests. For example, some storage controllers from LSI
Corporation provides for a “fast path” processing circuit (e.g.,
a first processing pathway/stack) operable in conjunction
with a firmware processing stack (e.g., a second/conventional

10

15

20

25

30

35

40

45

50

55

60

65

2

processing pathway generally implemented as firmware
instructions executed by a general or special purpose proces-
sor of the controller). The LSI Corporation fast path process-
ing circuit works in conjunction with specialized drivers on
the host systems to more rapidly process /O requests format-
ted to allow the fast path circuit to rapidly process the request
(e.g., the host system enhanced driver understands the RAID
mapping and generates fast path requests to directly access
the underlying physical storage devices thus allowing the fast
path circuit to rapidly process the /O request). The firmware
processing pathway is adapted to process any type of I/O
request received from any host system (e.g., for processing
1/O requests regardless of its formatting as a fast path 1/O
request). The firmware stack handles more generalized pro-
cessing using a general purpose processor executing instruc-
tions and providing full RAID mapping and management.
Thus, though more flexible, the firmware processing stack
processes 1/O requests more slowly than does the fast path
circuit.

In such storage controllers having multiple processing
stacks (e.g., having a fast path circuit pathway and a firmware
processing stack), some initial processing by the storage con-
troller is necessary to determine which of the multiple pro-
cessing stacks is appropriate for processing a particular [/O
request. This initial processing can be a complex process
depending on a number of factors. For example, if the storage
controller utilizes its cache memory in a write-back mode, use
of'a fast path processing circuit may give rise to data integrity
issues if there is dirty data presently in the cache memory of
the storage controller that has not yet been flushed or posted
to the storage devices. The fast path circuit may be optimally
tuned in such a controller so that it is unaware of the contents
of'the cache memory and thus could write data to the storage
devices that could later be overwritten if the dirty data is
flushed. Or, the fast path circuit could read data from the
storage devices that is not up to date because dirty data (more
up to date data) is presently stored in the cache memory for
the blocks accessed by the fast path circuit. Further, for
example, if the firmware processing stack maintains a list of
bad blocks to be avoided in storing or retrieving data from a
logical volume or from particular storage devices, the fast
path processing circuit may be unaware of the list of bad
blocks and may again give rise to data integrity problems by
attempting to access the potentially bad blocks. The fast path
circuit may attempt to read or write data to such a bad block
that only the firmware processing stack is aware may be bad.
Other situations may arise where a firmware /O request
processing stack is presently engaged in certain optimizations
such as coalescing smaller I/O requests to form full-stripe
writes, optimization for streaming I/O requests, etc. These
and other reasons may give rise to a preference for one /O
request processor of a storage controller over another despite
an encoding of the request by the host to designate or prefer a
particular processor.

Accounting for these various conditions in determining
which of the multiple processing stacks is best suited for
processing an I/O request can be a time-consuming, complex
procedure. Thus, present techniques may simply disable the
use of one of the multiple processing stacks (e.g., disable use
of the fast path /O processing circuit of L.SI Corporation
storage controllers) to avoid these and other potential prob-
lems if certain conditions may arise. For example, if any dirty
data is presently stored in the write-back cache memory (re-
gardless of whether a particular fast path [/O request may
access that dirty data) or if any blocks are designated as “bad
blocks” by the firmware processing stack (regardless of
whether a particular fast path I/O request may access those

US 9,268,695 B2

3

bad blocks), the firmware processing stack disables the fast
path processing circuit and chooses to process all I/O requests
through its slower, but more generalized, processing pathway.
In a conservative design approach, the LSI fast path /O
processing circuit may simply be disabled to avoid these and
other problems arising by processing of an /O request
directed to the fast path circuit. Disabling use of the fast path
1/0 processing circuit may degrade performance of the stor-
age controller.

Thus it is an ongoing challenge to effectively and effi-
ciently determine which I/O processing stack is best suited
for processing a particular I/O request and to divert a received
1/0O request to the preferred, selected 1/O processing stack
without risk of data integrity problems.

SUMMARY

The present invention solves the above and other problems,
thereby advancing the state of the useful arts, by providing
methods and structure within a storage controller for using
region locks to efficiently divert an I/O request received from
an attached host system to one of multiple processing stacks
in the controller. A region lock module within the controller
allows each processing stack to request a region lock for a
range of block addresses of the storage devices. A divert-type
lock request may be established to identify a range of block
addresses for which I/O requests should be diverted to a
particular one of the multiple processing stacks.

In one exemplary embodiment of a controller having a fast
path circuit for processing fast path formatted /O requests
and a firmware processing stack for processing any form of
1/0 request, the firmware processing stack may request that
the region lock module establish a divert-type region lock for
a range of block addresses. The range of block addresses are
associated with dirty data in cache and/or potential bad block
addresses. When the fast path circuit attempts to lock a range
of blocks to process an 1/O request, a divert-type lock that
covers any portion of the range of blocks for the 1/O request
will cause the I/O request to be diverted to the firmware
processing stack.

In one aspect hereof, a storage controller is provided that is
adapted to couple with one or more host systems and adapted
to manage data on one or more storage devices coupled with
the storage controller. The storage controller comprises a fast
path circuit adapted to process an /O request formatted for
fast path processing received from an attached host system
and a firmware processing stack operating on a processor of
the controller, the firmware processing stack adapted to pro-
cess any format of I/O request. The controller further com-
prises a region lock module coupled with the fast path circuit
and coupled with the firmware processing stack. The region
lock module is adapted to receive lock request signals to lock
a specified range of block addresses and is further adapted to
determine whether a received fast path formatted /O request
should be diverted to the firmware processing stack based on
the status of presently locked ranges of block addresses. The
storage controller is further adapted to divert the fast path
formatted /O request to the firmware processing stack for
processing in response to determining that the fast path for-
matted /O should be diverted to the firmware processing
stack.

Other aspects hereof provide a computer readable medium
embodying a method and the method itself. The method is
operable in a storage controller adapted to couple with one or
more host systems and adapted to couple with one or more
storage devices. The storage controller has a fast path circuit
for processing of fast path formatted I/O requests received

15

25

40

45

50

4

from a host system and has a firmware processing stack for
processing I/O requests of any format. The method comprises
receiving a fast path formatted /O request and determining,
by operation of a region lock module of the controller,
whether the received fast path formatted 1/O should be
diverted to the firmware processing stack based on the status
of presently locked ranges of block addresses. The method
then diverts the fast path formatted I/O request to the firmware
processing stack for processing in response to the determina-
tion that the fast path formatted I/O request should be diverted
to the firmware processing stack.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram of an exemplary storage control-
ler enhanced in accordance with features and aspects hereof
to provide for management of divert-type region locks to
divert processing of I/O requests from one processing stack of
the controller to another.

FIGS. 2 through 8 are flowcharts describing exemplary
methods in accordance with features and aspects hereof to
provide for management of divert-type region locks to divert
processing of I/O requests from one processing stack of the
controller to another.

FIG. 9 is a block diagram of an exemplary computing
device of a storage controller such as that of FIG. 1 adapted to
receive a computer readable medium embodying the methods
of FIGS. 2 through 8.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system comprising an
enhanced storage controller 100 adapted to couple with one
or more host systems 120 and with one or more storage
devices 130. Host system 120 may be any suitable computing
device or other system that generates [/O requests to access
storage devices 130. Storage devices 130 may be any suitable
devices for storing data such as magnetic or optical disk
drives, solid-state drives, etc. Storage controller 100 may be
coupled with host system 120 by interface 150. Interface 150
may comprise any suitable communication medium and pro-
tocol for coupling storage controller 100 with host system
120 including, for example, Serial Attached SCSI (SAS),
parallel SCSI, parallel Advanced Technology Attachment
(PATA), Serial ATA (SATA), Peripheral Component Inter-
connect (PCl including variants of PCI such as PCI Express),
etc. Storage controller 100 may be coupled with storage
devices 130 via interface 152. Interface 152 may comprise
any suitable communication medium and protocol for cou-
pling storage controller 100 with storage devices 130 includ-
ing, for example, parallel SCSISAS, PATA, SATA, PCI, Fibre
Channel, etc.

Storage controller 100 comprises fast path circuit 102 and
firmware processing stack 104 both adapted to process
received I/O requests from an attached host system by access-
ing storage devices 130. Both circuit 102 and stack 104 may
be referred to as processing “stacks”. Thus, controller 100
comprises multiple stacks for processing 1/O requests. Fur-
ther, any number of such processing stacks may be provided
in an embodiment of controller 100 as a matter of design
choice. Controller 100 is generally operable to divert an I/O
request from one processing stack to another based on diver-
sion information comprising region locks as discussed further
herein below. Such diversions by region locks may be used to
avoid potential corruption of data should one processing stack
be incapable of correctly processing an /O request. The
diversion region locks may also be used, for example, to

US 9,268,695 B2

5

prefer one processing stack over another for purposes of
performance enhancements and optimizations.

Firmware processing stack 104 comprises a general or
special purpose processor (not shown) and associated pro-
gram and data memory (not shown) storing programmed
instructions and data for execution by the general or special
purpose processor. The programmed instructions of firmware
processing stack 104 enable stack 104 to receive I/O requests
from host system 120 formatted in accordance with any suit-
able command structure and to process the received 1/O
request to access information on storage devices 130.

As noted above, although stack 104 provides the flexibility
to process any and all I/O requests, including RAID storage
management associated with I/O requests directed to a logical
volume, stack 104 may be slower than desired for processing
of certain types of /O requests. Thus, storage controller 100
further comprises fast path circuit 102. Fast path circuit 102
comprises an electronic circuit specifically designed to
handle 1/O requests formatted for processing by the fast path
circuit 102 received from an enhanced driver within the sys-
tem 120. Some storage controllers from LSI Corporation
exemplify the use of such a fast path circuit in combination
with an enhanced driver module to improve the performance
of storage controller 100 in accessing data. In general, an
enhanced driver (not shown) of host system 120 has access to
mapping information for RAID logical volumes managed by
storage controller 100 similar to the mapping information
maintained by controller 100 for RAID management. The
enhanced driver ofhost 120 may selectively perform requisite
logical to physical mapping more quickly and efficiently than
storage controller 100 utilizing firmware processing stack
104. In such cases, the enhanced driver of host system 120
prepares a fast path formatted 1/O request utilizing its own
processing power for any required logical to physical map-
ping or other required logical volume management computa-
tions. The fast path formatted I/O request is then forwarded to
storage controller 100 for processing by fast path circuit 102.

Firmware processing stack 104 is coupled with cache
memory 108 and bad block memory 110 by any suitable
processor or system bus 154. Each of cache memory 108 and
bad block memory 110 may comprise any suitable memory
components including, for example, dynamic random access
memory (DRAM), flash memory, etc. As is generally known
in the art, firmware processing stack 104 utilizes cache
memory 108 to store data associated with write [/O requests
destined to storage devices 130. In a write-through mode of
managing cache memory 108, firmware processing stack 104
stores write data associated with a write [/O request in cache
memory 108 and also (essentially simultaneously) stores the
write data on storage devices 130. The data so stored in cache
memory 108 may then be utilized by firmware processing
stack 104 to more rapidly complete subsequent read requests
requesting data from block addresses for which data is pres-
ently stored in cache memory when awake. In addition, firm-
ware processing stack 104 may identify a particular block
address or ranges of block addresses that may be potentially
bad blocks. Any suitable techniques within firmware process-
ing stack 104 may be utilized to identify blocks that may be
considered “bad”. Firmware processing stack 104 records
such block addresses in bad block memory 110 so as to note
the blocks for avoidance in its processing of /O requests.
These and other functions within controller 100 may benefit
from the divert-type region lock features and aspects hereof.
In any situation within controller 100 where requests directed
to one request processing stack or circuit should be diverted to
a different processing stack or circuit, the divert-type region

10

15

20

25

30

35

40

45

50

55

60

65

6

lock features and aspects hereof provide for making such
determination efficiently with minimal overhead processing.

Both fast path circuit 102 and firmware processing stack
104 interact with region lock module 106 of controller 100
(e.g., via communication paths 156 and 158, respectively).
Region lock module 106 comprises any suitable circuit for
receiving lock requests and region lock release requests from
fast path circuit 102 and from firmware processing stack 104.
Region lock requests generally identify a range of block
addresses for which an I/O request processing stack requires
access (i.e., temporary shared access for a read, exclusive
access for some operations, etc.). For example, when fast path
circuit 102 identifies a range of affected block addresses
required for processing a received fast path formatted I/O
request, it issues a lock request via path 156 to region lock
module 106. Region lock module 106 maintains data struc-
tures in an associated region lock memory (not shown) iden-
tifying ranges of blocks that are presently locked to either of
fast path circuit 102 or firmware processing stack 104.
Responsive to a new lock request, region lock module 106
determines whether the range of block addresses identified by
the new request overlaps any portion of the ranges of block
addresses associated with a presently granted region lock. If
such an overlap is detected, region lock module 106 denies
the lock or delays granting the lock until such time as the
range of block addresses for the new request does not overlap
any portion of block addresses associated with a presently
granted lock. In like manner, fast path processing circuit 102
and firmware processing stack 104 also issue lock release
requests to region lock module 106 when their need for access
is completed (i.e., when the associated /O request has been
processed). In some exemplary embodiments, region lock
module 106 may also serve as an initial routing component to
detect whether a received 1/O request is formatted as a fast
path I/O request or not so formatted. In such exemplary
embodiments, module 106 may be directly coupled with host
120 (through an appropriate communication medium and
protocol) while circuit 102 and stack 104 are then coupled
directly with module 106 (and thus indirectly with host 120).
These and other configuration and arrangements of the ele-
ments of controller 100 will be apparent to those of ordinary
skill in the art as a matter of design choice.

In accordance with features and aspects hereof, firmware
processing stack 104 may issue divert-type lock requests to
region lock module 106 (via path 158). A divert-type lock
request identifies a range of block addresses for which all I/O
requests that may affect the identified a range of block
addresses should be diverted to one or another of the multiple
1/O request processing stacks (e.g., fast path circuit 102 or
firmware processing stack 104) to avoid possible data corrup-
tion and/or to permit optimizations for performance enhance-
ment. More specifically, for example, firmware processing
stack 104 may manage use of cache memory 108 and bad
block of memory 110. As noted above, when firmware pro-
cessing stack 104 manages cache memory 108 in a write-back
mode, write data associated with a received write /O request
may be stored in cache memory 108 and marked as “dirty
data”. When firmware processing stack 104 stores such dirty
data in cache memory 108, it may also issue a divert-type lock
request to region lock module 106 to identify the correspond-
ing range of block addresses for which further /O requests
should be diverted to firmware processing stack 104. When
fast path circuit 102 next attempts to lock a range of block
addresses for a fast path formatted I/O request, region lock
module 106 will detect the overlap of the granted divert-type
lock and force diversion of the fast path formatted request to
firmware processing stack 104 for further processing. Thus,

US 9,268,695 B2

7

fast path formatted 1/O requests destined to the range of block
addresses for which the firmware processing stack has
already acquired a divert-type region lock, will be diverted
away from fast path circuit 102 for processing by firmware
processing stack 104. As noted above, region locks may be
employed by firmware processing stack 104 for any number
of reasons to divert fast path formatted /O requests away
from fast path circuit 102 for processing by firmware process-
ing stack 104. Besides the avoidance of data corruption as
noted above, diversion region locks may be utilized by firm-
ware processing stack 104 to assure proper operation of vari-
ous optimizations that may be available such as, coalescing of
smaller operations into larger operations, load balancing
among the I/O processing stacks, streaming /O optimiza-
tions, etc.

Bolded dashed arrows 160 and 162 represent the diversion
of a fast path formatted /O request received by fast path
circuit 102 for further processing by firmware processing
stack 104. In some exemplary embodiments, region lock
module 106 may perform the diversion (as indicated by
dashed arrow 162) in response to fast path circuit 102
attempting to lock a range of block addresses before process-
ing a fast path formatted /O request. In other exemplary
embodiments, fast path circuit 102 may request its access
lock request for a range of block addresses to be accessed by
a fast path formatted I/O request and receive a denial signal
from region lock module 106 indicating that the affected
range of block addresses should be diverted to firmware pro-
cessing stack 104 for further processing. In such an exem-
plary embodiment, fast path circuit 102 may itself perform
the processing to divert the fast path formatted 1/O request to
firmware processing stack 104 as indicated by dashed arrow
160.

In some exemplary embodiments, region lock module 106
maintains information regarding presently granted locks (ac-
cess locks as well as divert-type locks) in a tree structure to
permit rapid searching to locate potential overlapping lock
requests. The tree structure entries are organized by ranges of
block addresses to allow for rapid searching by region lock
module 106. The tree structure may be maintained by suitably
designed custom circuitry within region lock module 106 or,
in other exemplary embodiments, may be provided by addi-
tional custom circuit logic associated with the circuitry of
region lock module 106. The Related Patents noted above
provide exemplary details for implementation of such a tree
structure and for custom circuits adapted to manage such a
tree structure. It will be understood that such a tree structure
represents one possible embodiment. Numerous other data
structures and corresponding control log may be employed to
record and retrieve information regarding the locks. For
example, a hash table structure may be employed for these
purposes.

Exemplary additional details of methods of operation of
storage controller 100 as regards the diversion of fast path
formatted 1/O requests and the associated management of
divert-type region locks are discussed herein below with
respect to other figures. Those of ordinary skill in the art will
readily recognize that divert-type region lock features and
aspects hereof may be applicable in any storage controller
architecture having at least two processing stacks/processors
(e.g., such as LSI Corporation’s fast path circuit in conjunc-
tion with its firmware/conventional processing stack). Fea-
tures and aspects hereof may beneficially apply to any such
storage controller architecture where a rapid decision is
desired to divert a request from one processing stack (to
which a request is nominally directed) to another processing
stack of the controller. Further, those of ordinary skill in the

10

15

20

25

30

35

40

45

50

55

60

65

8

art will readily recognize numerous additional and equivalent
elements that may be present in a fully functional storage
controller. Such additional and equivalent elements are omit-
ted herein for simplicity and brevity of this discussion

FIGS. 2 through 8 are flowcharts describing exemplary
methods for managing the diversion of fast path formatted I/O
requests from a fast path processing circuit to a firmware
processing stack of a storage controller in accordance with
features and aspects hereof. The methods of FIGS. 2 through
8 are generally operable in an enhanced storage controller
such as storage controller 100 of FIG. 1. At step 200, the
enhanced storage controller receives a fast path formatted I/O
request. Such a request may be received directly by the fast
path circuit of the enhanced storage controller or may be
initially received by a selection module of the controller oper-
able to determine whether the received I/O request is format-
ted as a fast path /O request and, if so, forwards the request to
the fast path circuit. At step 202, the enhanced storage con-
troller determines whether the fast path formatted I/O request
is attempting to access any block addresses that should be
processed by the firmware processing stack based on the
present status of granted locks—in particular based on divert-
type locks as discussed further herein below. In general, the
fast path circuit will apply a lock request signal to the region
lock module of the enhanced storage controller requesting
access to the range of block addresses identified in the
received, fast path formatted I/O request. The region lock
module then makes the determination indicated by step 202 as
to whether the identified range of block addresses overlaps
with the range of block addresses associated with any pres-
ently granted lock. In particular, the region lock module will
determine whether the requested range of block addresses
overlaps any divert-type lock previously granted by the
region lock module. If no such overlap of block addresses is
identified, step 204 continues normal processing of the fast
path circuit to access the identified range of block addresses in
accordance with the fast path formatted /O request (and then
releases the access lock granted by the region lock module).
Alternatively, if the region lock module determines that the
range of block addresses to be accessed by the fast path
formatted 1/O request overlaps any portion of the range of
block addresses in a previously granted divert-type lock
request, step 206 is next operable to divert the fast path
formatted /O request to the firmware processing stack for
completion of the /O request. By so diverting the fast path
formatted I/O request to the firmware processing stack of the
enhanced storage controller, data corruption may be avoided
and firmware processing stack optimizations may be advan-
tageously utilized without completely disabling the fast path
circuit of the enhanced storage controller (as is presently
practiced). Thus, desired performance levels of the enhanced
storage controller may be maintained for fast path formatted
1/O requests that can be processed by the fast path circuit
while requests that should be diverted to the firmware pro-
cessing stack may be quickly identified as such.

FIG. 3 is a flowchart describing exemplary additional
details of a method in accordance with features and aspects
thereof to divert fast path formatted I/O requests from the fast
path circuit to a firmware processing stack of the enhanced
storage controller by use of region locks. The method of FIG.
3 reflects processing by the fast path circuit of the enhanced
storage controller operable in conjunction with a region lock
module of the enhanced storage controller. At step 300, a fast
path formatted I/O request is received from a host system (i.e.,
either received directly from the host or received indirectly
through a preliminary selection component of the enhanced
storage controller). Step 302 then applies a lock request signal

US 9,268,695 B2

9

to the region lock module requesting access to a range of
block addresses identified for access by the fast path format-
ted I/O request. The range of block addresses is identified by
information within the received fast path formatted I/O
request. The signal so applied to the region lock module may
therefore indicate both the request for an access lock as well
as the range of block addresses affected by the 1/O request. In
some exemplary embodiments, the signal so applied to the
region lock module may further comprise sufficient context
information to provide the region lock module with all infor-
mation it may require to divert the request to the firmware
processing stack of enhanced storage controller. At step 304,
the fast path circuit determines whether its requested lock has
been granted. In some exemplary embodiments, the region
lock module may return a signal to the fast path circuit indi-
cating that the requested lock has been granted or denied. If
the requested lock has been granted, steps 306 and 308 are
operable to complete processing of the fast path formatted [/O
request by operation of the fast path circuit (step 306) and
then to release the granted, access lock by applying an appro-
priate release signal to the region lock module (step 310). In
some embodiments, if the requested lock is denied because
the requested range of blocks to be locked overlaps a divert-
type lock acquired by the firmware processing stack, the
region lock module perform all processing necessary to divert
the I/O request to the firmware processing stack based on the
context information provided in the lock request signal
applied at step 302. In such embodiments, the fast path circuit
need not perform any further processing but merely awaits
receipt of a next fast path formatted I/O request. In other
exemplary embodiments, the region lock module returns a
signal to the fast path circuit indicating denial of its region
lock request and further indicating that the denial is due to a
previously granted to divert-type region lock request. In such
exemplary embodiments, step 312 is next operable to transfer
or divert the fast path formatted I/O request to the firmware
processing stack (e.g., the I/O request is diverted to the firm-
ware processing stack by operation of the fast path circuit
rather than by the region lock module per se).

FIG. 4 is a flowchart providing exemplary additional
details of the processing of a region lock module within an
enhanced storage controller (e.g., region lock module 106 of
storage controller 100 of FIG. 1). Processing of FIG. 4
describes principally the processing of the region lock mod-
ule responsive to a lock request signal received from the fast
path circuit of the enhanced storage controller. Similar pro-
cessing may be performed in response to receipt of an access
lock request received from the firmware processing stack.
Such similar processing will be readily apparent to those of
ordinary skill in the art and is thus omitted herein for simplic-
ity and brevity of this discussion. Responsive to receipt of an
access lock request from the fast path circuit, step 400 adds a
new entry to its tree structure of locks (added in an appropriate
place as determined by the ranges of block addresses associ-
ated with each entry). Step 402 next determines whether the
range of block addresses identified in the lock request over-
laps any portion of the range of block addresses associated
with a previously granted lock request (i.e., a previously
granted lock request of any type including an access lock or a
divert-type lock). If not, step 404 marks the new lock entry as
granted to the fast path circuit for the identified range of block
addresses and signals the fast path circuit to continue its
operation to execute the I/O operation. If step 402 determines
that the requested range of block addresses to be locked
overlaps the range of block addresses associated with one or
more previously granted lock requests, step 406 determines
whether any of the overlapping previously granted locks is a

35

40

45

10

divert-type lock. If so, step 408 marks the newly added lock
entry as a diverted lock for an /O request that has now been
(soon will be) diverted to the firmware processing stack.

Following step 408 or if step 406 determines that the new
lock request does not overlap a granted divert-type lock,
processing continues at step 410 to determine whether any
other (e.g., non-divert-type such as an access lock) may over-
lap the range of block addresses of the received lock request
from the fast path circuit. If so, step 412 waits for all such
other previously granted locks to be released.

Following step 412 or if step 410 determines that no other
such locks are overlapped, processing continues at step 414 to
determine whether the newly added entry in the lock tree has
been marked as now diverted. If not, step 404 marks the lock
entry has now granted to the fast path circuit for the identified
range of blocks and signals the fast path circuit of the grant
thus allowing the fast path circuit to continue its processing of
the fast path formatted I/O request.

Step 414 determines that the new lock entry has been
marked as now diverted and step 416 marks the newly added
lock entry as granted to the firmware processing stack for the
identified range of block addresses. The fast path formatted
1/O request is thus diverted to the firmware processing stack
for eventual processing in due course. No further processing
of the request is performed by the fast path circuit. In other
exemplary embodiments, as noted above, the region lock
module may simply signal the fast path circuit that its lock
request has been denied and should be diverted to the firm-
ware processing stack thus allowing the fast path circuit, per
se, to perform the processing to divert the request to the fast
firmware processing stack.

Also depicted in the method of FIG. 4 is the method pro-
cessing step for releasing a previously granted lock request.
When an /O request processing stack (e.g., the fast path
circuit or the firmware processing stack) has completed its
processing of an I/O request for which it get obtained a
granted lock, step 420 releases the previously granted lock in
response to an appropriate release signal received from the
processing stack.

FIGS. 5, 6, and 7 depict exemplary additional details of
processing within the firmware processing stack of the
enhanced storage controller (e.g., firmware processing stack
104 of storage controller 100 of FIG. 1) to request divert-type
region locks and to release previously granted the divert-type
region locks responsive to particular processing within the
firmware processing stack. As noted above, when the firm-
ware processing stack processes a write request utilizing its
cache memory in a write-back mode, it requests a divert-type
region lock be granted for the range of block addresses for
which dirty data resides in the cache memory (i.e., dirty data
that has not yet been flushed or posted to the storage devices).
FIG. 5 describes exemplary additional details of the process-
ing of firmware processing stack to request such a divert-type
lock responsive to storing dirty data in its cache memory. At
step 500 the firmware processing stack processes a write /O
request by storing data in its cache memory in a write-back
mode. At step 502, the firmware processing stack marks in the
affected blocks in cache memory as “dirty data” signifying
that the cache memory contains data corresponding to block
addresses not yet posted or flushed to the storage devices. At
step 504, the firmware processing stack applies a divert-type
lock request signal to the region lock module identifying the
range of block addresses for which dirty data has been stored
in the cache memory.

FIG. 6 describes further processing of the firmware pro-
cessing stack to release a divert-type lock previously granted
when the dirty data is successfully flushed or posted to storage

US 9,268,695 B2

11

devices. At step 600, the firmware processing stack performs
appropriate processing to flush or post dirty data blocks from
the cache memory to the storage devices for persistent stor-
age. Step 602 then applies a divert-type lock release signal to
the region lock module identifying a range of block addresses
that are no longer associated with “dirty data” in the cache
memory. The region lock module may then release the pre-
viously granted divert-type lock.

FIG. 7 is a flowchart describing exemplary additional
details of processing of the firmware processing stack to
request a divert-type lock be granted for a range of block
addresses that may represent bad blocks. As noted above, the
firmware processing stack may designate a block as “bad” in
response to any of various types of errors encountered in the
utilizing a particular block or range of block addresses. At
step 700, the firmware processing stack adds one or more
block addresses to its bad block list stored in a bad block
memory associated with the firmware processing stack. At
step 702, the firmware processing stack applies a divert-type
lock request signal to the region lock module requesting a
divert-type region lock be granted for an identified range of
block addresses that are identified as “bad” blocks by pro-
cessing of the firmware processing stack.

FIG. 8 describes further processing of the firmware pro-
cessing stack to release a divert-type lock previously granted
when a block previously marked as bad (a range of blocks
marked bad with a corresponding divert-type lock) have been
successfully updated (e.g., upon a successful write to the
previously marked bad blocks). At step 800, the firmware
processing stack performs appropriate processing to remove
one or more blocks from the bad block list (e.g., in association
with completing a successful write operation to the bad block/
blocks). Step 802 then applies a divert-type lock release sig-
nal to the region lock module identifying a range of block
addresses that are no longer associated with bad blocks in the
updated bad block list. The region lock module may then
release the previously granted divert-type lock.

Those of ordinary skill in the art will readily recognize
numerous additional and equivalent steps that may be present
in fully functional methods such as the methods described
with respect to FIGS. 2 through 8. Such additional and
equivalent steps are omitted herein for simplicity and brevity
of this discussion.

Embodiments disclosed herein can take the form of soft-
ware, hardware, firmware, or various combinations thereof.
In one particular embodiment, software is used to direct a
processing system of a storage device (e.g., a storage control-
ler) to perform the various operations disclosed herein. FIG.
9 illustrates a processing system 900, such as firmware pro-
cessing stack 104 within storage controller 100 of FIG. 1,
operable to execute programmed instructions stored in a com-
puter readable medium to perform desired functions in an
exemplary embodiment. Processing system 900 is operable to
perform the above operations by executing programmed
instructions tangibly embodied on computer readable storage
medium 912. In this regard, embodiments of the invention can
take the form of a computer program accessible via computer-
readable medium 912 providing program code for use by a
computer or any other instruction execution system.

For the purposes of this description, computer readable
storage medium 912 can be anything that can contain or store
the program for use by the computer. Computer readable
storage medium 912 can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor device.
Examples of computer readable storage medium 912 include
a solid state memory (e.g., a flash memory), a magnetic tape,
a removable computer diskette, a random access memory

10

15

20

25

30

35

40

45

50

55

60

65

12
(RAM), a read-only memory (ROM), a rigid magnetic disk,
and an optical disk. Current examples of optical disks include
compact disk-read only memory (CD-ROM), compact disk-
read/write (CD-R/W), and DVD.

Processing system 900, being suitable for storing and/or
executing the program code, includes at least one processor
902 coupled to program and data memory 904 and to cache
memory subsystem 908 through a system bus 950. Program
and data memory 904 can include local memory employed
during actual execution of the program code, bulk storage,
and cache memories that provide temporary storage of at least
some program code and/or data in order to reduce the number
of times the code and/or data are retrieved from bulk storage
during execution.

Input/output or /O devices 906 may further be included
(e.g., devices for coupling with the storage devices and host
systems. Fast path circuit 908 and region lock module 914
may also be integrated with the system to enable processing
system 900 to rapidly process fast path formatted I/O requests
and to coordinate locking of block addresses as discussed
herein above.

While the invention has been illustrated and described in
the drawings and foregoing description, such illustration and
description is to be considered as exemplary and not restric-
tive in character. One embodiment of the invention and minor
variants thereof have been shown and described. In particular,
features shown and described as exemplary software or firm-
ware embodiments may be equivalently implemented as cus-
tomized logic circuits and vice versa. Protection is desired for
all changes and modifications that come within the spirit of
the invention. Those skilled in the art will appreciate varia-
tions of the above-described embodiments that fall within the
scope of the invention. As a result, the invention is not limited
to the specific examples and illustrations discussed above, but
only by the following claims and their equivalents.

What is claimed is:

1. A storage controller adapted to couple with one or more
host systems and adapted to manage data on one or more
storage devices coupled with the storage controller, the stor-
age controller comprising:

a fast path circuit adapted to process an /O request format-
ted for fast path processing received from an attached
host system;

afirmware processing stack operating on a processor of the
controller, the firmware processing stack adapted to pro-
cess any format of /O request; and

a region lock module coupled with the fast path circuit and
coupled with the firmware processing stack, the region
lock module adapted to process lock request signals
from the fast path circuit to lock a specified range of
block addresses in a cache memory of the storage con-
troller, the region lock module further adapted to deter-
mine whether a received fast path formatted 1/O request
should be diverted to the firmware processing stack
based on the status of presently locked ranges of block
addresses,

wherein the storage controller is adapted to divert the fast
path formatted 1/O request to the firmware processing
stack for processing in response to determining that
processing of the fast path formatted /O should be
diverted to the firmware processing stack,

wherein the firmware processing stack is adapted to apply
a lock request to the region lock module to establish a
divert-type region lock for a range of block addresses in
response to determining that a fast path formatted 1/0

US 9,268,695 B2

13

request attempting to access blocks in the range of block
addresses should be processed by the firmware process-
ing stack,

wherein the region lock module is further adapted to estab-

lish the divert-type region lock for a range of block
addresses responsive to receipt of the lock request from
the firmware processing stack, and

wherein the controller is further adapted to divert a

received fast path formatted 1/O request to the firmware
processing stack in response to detecting that the divert-
type region lock has been established for a range of
block addresses that would be affected by fast path cir-
cuit processing of the fast path formatted I/O request.

2. The controller of claim 1 wherein:

the cache memory is adapted to store write data for block

addresses affected by processing of a write 1/O request
by the firmware processing stack,

wherein the firmware processing stack is further adapted to

apply the divert-type region lock request to the region
lock module for a range of block addresses in response to
storing data in the cache memory that relates to block
addresses within the range of block addresses.

3. The controller of claim 2

wherein the firmware processing stack manages the cache

memory as a write-back cache memory.

4. The controller of claim 1 further comprising:

abad block memory coupled with the firmware processing

stack, the bad block memory adapted to store bad block
information identifying block addresses of potentially
bad blocks of the storage devices,

wherein the firmware processing stack is further adapted to

apply the divert-type region lock request to the region
lock module for a range of block addresses in response to
storing an entry in the bad block memory identifying a
block address within the range of block addresses.

5. The controller of claim 1

wherein the fast path circuit applies context information

regarding the fast path formatted /O request to the
region lock module, and

wherein the region lock module is further adapted to divert

the fast path formatted I/O request to the firmware pro-
cessing stack for processing in accordance with the con-
text information.

6. The controller of claim 1

wherein the fast path circuit is further adapted to divert the

fast path formatted I/O request to the firmware process-
ing stack for processing in response to a signal from the
region lock module indicating that processing of the fast
path formatted 1/O should be diverted to the firmware
processing stack.

7. A method operable in a storage controller adapted to
couple with one or more host systems and adapted to couple
with one or more storage devices, the storage controller hav-
ing a fast path circuit for processing of fast path formatted I/O
requests received from a host system and having a firmware
processing stack for processing I/O requests of any format,
the method comprising:
receiving a lock request from the fast path circuit to lock a

range of block addresses in a cache memory of the

storage controller;
receiving a fast path formatted 1/O request;
determining, by operation of a region lock module of the

controller, whether the received fast path formatted 1/0

should be diverted to the firmware processing stack

based on a status of presently locked ranges of block
addresses in the cache memory;

5

10

15

20

25

30

35

40

45

50

55

60

65

14

diverting the fast path formatted I/O request to the firmware
processing stack for processing in response to the deter-
mination that the fast path formatted /O request should
be diverted to the firmware processing stack for process-
mng;

applying, responsive to receipt of the fast path formatted

1/O request, a fast path lock request signal from the fast
path circuit to the region lock module wherein the fast
path lock request comprises information regarding the
fast path formatted 1/O request,

wherein the step of determining comprises:

determining, by operation of a region lock module,

whether the received fast path formatted 1/O request is
directed to a block address within a locked range of
block addresses based on the information provided with
the fast path lock request signal;

identifying, by operation of the firmware processing stack,

a range of block addresses for which a fast path format-
ted I/O request attempting to access the range should be
diverted to the firmware processing stack;

applying a divert-type lock request signal from the firm-

ware processing stack to the region lock module request-
ing establishment of a divert-type lock for the identified
range of block addresses; and

establishing, by operation of the region lock module, the

divert-type lock for the range of block addresses identi-
fied in the divert-type lock request signal in response to
receipt of the divert-type lock request signal,

wherein the step of determining further comprises:

determining whether the received fast path formatted I/O

request is directed to a block address within the range of
block addresses associated with the established divert-
type lock such that processing of the fast path formatted
1/0O request should be diverted to the firmware process-
ing stack based on the status of presently locked ranges
of block addresses.

8. The method of claim 7

wherein the firmware processing stack manages the cache

memory as a write-back cache,

the method further comprising:

storing, by operation of the firmware processing stack,

write data in the cache memory in response to process-
ing of a write I/O request by the firmware processing
stack,

wherein the step of identifying further comprises:

identifying the range of block addresses that includes a

block address associated with the write data stored in
cache memory.

9. The method of claim 7

wherein the controller has a bad block memory coupled

with the firmware processing,

the method further comprising:

storing, by operation of the firmware processing stack,

information in the bad block memory identifying block
addresses of potentially bad blocks on the storage
devices,

wherein the step of identifying further comprises:

identifying the range of block addresses that includes a

block address of a potentially bad block in the bad block
memory.

10. A non-transitory computer readable medium tangibly
embodying programmed instruction which, when executed
by a computer, perform a method operable in a storage con-
troller, the storage controller adapted to couple with one or
more host systems and adapted to couple with one or more
storage devices, the storage controller having a fast path
circuit for processing of fast path formatted I/O requests

US 9,268,695 B2

15

received from a host system and having a firmware processing
stack for processing 1/O requests of any format, the method
comprising:
receiving a lock request from the fast path circuit to lock a
range of block addresses in a cache memory of the
storage controller;
receiving a fast path formatted 1/O request;
determining, by operation of a region lock module of the
controller, whether the received fast path formatted 1/0
should be diverted to the firmware processing stack
based on the status of presently locked ranges of block
addresses in the cache memory;
diverting the fast path formatted [/O request to the firmware
processing stack for processing in response to the deter-
mination that processing of the fast path formatted 1/O
request should be diverted to the firmware processing
stack;
applying, responsive to receipt of the fast path formatted
1/O request, a fast path lock request signal from the fast
path circuit to the region lock module wherein the fast
path lock request comprises information regarding the
fast path formatted I/O request,
wherein the step of determining comprises:
determining, by operation of a region lock module,
whether the received fast path formatted 1/O request is
directed to a block address within a locked range of
block addresses based on the information provided with
the fast path lock request signal;
identifying, by operation of the firmware processing stack,
a range of block addresses for which a fast path format-
ted I/O request attempting to access the range should be
diverted to the firmware processing stack;
applying a divert-type lock request signal from the firm-
ware processing stack to the region lock module request-
ing establishment of a divert-type lock for the identified
range of block addresses; and
establishing, by operation of the region lock module, the
divert-type lock for the range of block addresses identi-
fied in the divert-type lock request signal in response to
receipt of the divert-type lock request signal,
wherein the step of determining further comprises:
determining whether the received fast path formatted 1/O
request is directed to a block address within the range of
block addresses associated with the established divert-
type lock such that processing of the fast path formatted
1/O request should be diverted to the firmware process-
ing stack based on the status of presently locked ranges
of block addresses.
11. The medium of claim 10
wherein the firmware processing stack manages the cache
memory as a write-back cache,
the method further comprising:
storing, by operation of the firmware processing stack,
write data in the cache memory in response to process-
ing of a write 1/O request by the firmware processing
stack,

10

20

30

35

40

45

50

16

wherein the step of identifying further comprises:

identifying the range of block addresses that includes a
block address associated with the write data stored in
cache memory.

12. The medium of claim 10

wherein the controller has a bad block memory coupled
with the firmware processing,

the method further comprising:

storing, by operation of the firmware processing stack,
information in the bad block memory identifying block
addresses of potentially bad blocks on the storage
devices,

wherein the step of identifying further comprises:

identifying the range of block addresses that includes a
block address of a potentially bad block in the bad block
memory.

13. A storage controller operable to process Input/Output

(I/0) requests from a host system to a plurality of storage
devices, the storage controller comprising:

a cache memory operable to cache the 1/O requests;

a firmware processing stack operable to process the 1/O
requests;

a fast path circuit operable to select a portion of the I/O
requests for fast path processing based on a format ofthe
1/O requests; and

a region lock module coupled to the fast path circuit and to
the firmware processing stack,

wherein the region lock module is operable to process a
lock request from the fast path circuit to lock a specified
range of block addresses in the cache memory, to divert
the portion of the I/O requests for fast path processing to
the firmware processing stack based on the lock request,

wherein the firmware processing stack processes the por-
tion of the I/O requests to the storage devices on behalf
of the fast path circuit in response to the portion of the
1/O requests being diverted to the firmware processing
stack,

wherein the firmware processing stack is adapted to apply
a lock request to the region lock module to establish a
divert-type region lock for a range of block addresses in
response to determining that a fast path formatted 1/0
request attempting to access blocks in the range of block
addresses should be processed by the firmware process-
ing stack,

wherein the region lock module is further adapted to estab-
lish the divert-type region lock for a range of block
addresses responsive to receipt of the lock request from
the firmware processing stack, and

wherein the storage controller is further adapted to divert a
received fast path formatted 1/O request to the firmware
processing stack in response to detecting that the divert-
type region lock has been established for a range of
block addresses that would be affected by fast path cir-
cuit processing of the fast path formatted I/O request.

#* #* #* #* #*

